JOM 22437

Cluster chemistry

LXXX *. Reactions of $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{13}$ with 1,3-butadiene: addition to C_{α} and formation of a μ_{4}-cyclohexenyne complex. X-Ray structures of $\mathrm{Ru}_{5}\left\{\mu_{4}{ }^{-}\right.$ $\left.\mathrm{CC}\left(\mathrm{PPh}_{2}\right) \mathrm{CH}_{2}-\eta^{3}-\mathrm{CHCHCH}_{2}\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{11}$, $\mathrm{Ru}_{5}\left(\mu_{4}-\mathrm{CC}\left(\mathrm{PPh}_{2}\right) \mathrm{CHCH}=\mathrm{CHMe}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{9}$ and $\mathrm{Ru}_{5}\left(\mu_{4}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{11}$

Chris J. Adams, Michael I. Bruce
Jordan Laboratories, Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide, South Australia 5001 (Australia)

Brian W. Skelton and Allan H. White
Department of Chemistry, University of Western Australia, Nedlands, Western Australia 6009 (Australia)
(Received September 27, 1991)

Abstract

Reactions between $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{13}$ (1) and 1,3-butadiene have given Ru_{5} -$\left\{\mu_{4}-\mathrm{CC}\left(\mathrm{PPh}_{2}\right) \mathrm{CH}_{2}-\eta^{3}-\mathrm{CHCHCH}_{2}\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{11},(7), \mathrm{Ru}_{5}\left\{\mu_{4}-\mathrm{CC}\left(\mathrm{PPh}_{2}\right) \mathrm{CHCH}=\mathrm{CHMe}\right\}(\mu-$ $\left.\mathrm{PPh}_{2}\right)(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{9}(8)$, and $\mathrm{Ru}_{5}\left(\mu_{4}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{11}(9)$, in addition to the previously described metallated benzoyldiphenylphosphine derivative, $\mathrm{Ru}_{4}\left(\mu_{4}-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\left(\eta^{3}-\right.$ $\mathrm{C}_{4} \mathrm{H}_{7}$) (6). Complexes 7 and 8 contain isomeric tertiary phosphine ligands formed by addition of the 1,3-diene to C_{α} of the $\mathrm{C}_{2} \mathrm{PPh}_{2}$ ligand in 1 . The metal cores are based on square pyramidal Ru_{5} clusters, but in 7, two apical-basal Ru-Ru vectors are long, formally $1-e$, bonds. In 9 , the cluster is an Ru -capped $\mathrm{C}_{2} \mathrm{Ru}_{4}$ octahedron, the two carbons forming part of a cyclohex-1-en-4-yne ligand generated by cycloaddition of the diene to a C_{2} fragment with concomitant $\mathrm{P}-\mathrm{C}$ bond cleavage. Complexes 7,8 and 9 were fully characterised by single crystal X-ray studies.

Introduction

We have described several reactions between the open Ru_{5} cluster $\mathrm{Ru}_{5}\left(\mu_{5^{-}}\right.$ $\left.\mathrm{C}_{2} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{13}(1 ;$ Scheme 1$)$ and olefins, in which the following types of

[^0]
(2)

(4)

Scheme 1.
reactions were found [1,2]: (a) three-component cyclo-addition reactions incorporating the olefin, the intact $\mathrm{C}_{2} \mathrm{PPh}_{2}$ ligand and a molecule of CO to give 2 ; (b) attack on C_{α} with concomitant cleavage of the $\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}$ bond to give 3 [3]; (c) attack at C_{α} and cleavage of the $P-C_{\alpha}$ bond to give 4 [4]. A further reaction between 4 and excess olefin resulted in cycloaddition to form a substituted η-cyclopentadienyl ligand, as in 5 [4]. We have also reported that a related cyclo-addition reaction between 1 and 1,3-butadiene gave the tetranuclear complex 6 [1]. Here we describe three other complexes which we have isolated from the latter reaction and characterised by X-ray crystallography, which result from (i) a fourth type of reaction, involving addition at C_{α} to give two isomeric substituted tertiary phosphine ligands containing hydrocarbon chains which interact extensively with the cluster and (ii) cleavage of the $\mathrm{P}-\mathrm{C}_{\alpha}$ bond to give a C_{2} fragment which is trapped by cyclo-addition of a butadiene molecule.

Results and discussion

The reaction between 1 and 1,3-butadiene was carried out in benzene at $80^{\circ} \mathrm{C}$ for 10 h . Separation of the products by preparative TLC gave four complexes, of which 6 has been described previously [1]. Two relatively slow-moving bands contained black $\mathrm{Ru}_{5}\left\{\mu_{4}-\mathrm{CC}\left(\mathrm{PPh}_{2}\right) \mathrm{CH}_{2}-\eta^{3}-\mathrm{CHCHCH}_{2}\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{11}$ (7) and dark greenish-black $\mathrm{Ru}_{5}\left\{\mu_{4}-\mathrm{CC}\left(\mathrm{PPh}_{2}\right) \mathrm{CHCH}=\mathrm{CHMe}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{9}$ (8), while a red band with $R_{\mathrm{f}} 0.7$ contained $\mathrm{Ru}_{5}\left(\mu_{4}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{11}$ (9). All three complexes were fully characterised by X-ray crystallographic studies, which will be described in turn.

Molecular structure of $R u_{5}\left\{\mu_{4}-\mathrm{CC}\left(\mathrm{PPh}_{2}\right) \mathrm{CH}_{2}-\eta^{3}-\mathrm{CHCHCH}_{2}\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-$ $\mathrm{CO})(\mathrm{CO})_{H}(7)$

A molecule of 7 is depicted in Fig. 1 and selected bond distances and angles are given in Table 1. The five ruthenium atoms form an envelope, the flap being bent over at an acute angle [65.08(4) ${ }^{\circ}$, held by the $\mu-\mathrm{PPh}_{2}$ group bridging $\mathrm{Ru}(1)-\mathrm{Ru}(5)$;

Scheme 2.

(7)

Fig. 1. Plot of a molecule of $\mathrm{Ru}_{5}\left(\mu_{4}-\mathrm{CC}\left(\mathrm{PPh}_{2}\right) \mathrm{CH}_{2}-\eta^{3}-\mathrm{CHCHCH}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{11}$ (7), showing the atom numbering scheme. Non-hydrogen atoms are shown as 20% thermal ellipsoids; hydrogen atoms have arbitrary radii of $0.1 \AA$.

Table 1
Selected bond lengths (\AA) and angles (deg) for $\mathrm{Ru}_{5}\left\{\mu_{4}-\mathrm{CC}\left(\mathrm{PPh}_{2}\right) \mathrm{CH}_{2}-\eta^{3}-\mathrm{CHCHCH}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mu$ $\mathrm{CO})(\mathrm{CO})_{11}$ (7) and $\mathrm{Ru}_{5}\left(\mu_{4}-\mathrm{CC}\left(\mathrm{PPh}_{2}\right) \mathrm{CHCH}=\mathrm{CHMe}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{9}(8)$

	7	8
$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$2.900(2)$	2.748 (1)
$\mathrm{Ru}(1)-\mathrm{Ru}(4)$	$2.962(1)$	2.872(1)
$\mathrm{Ru}(1)-\mathrm{Ru}(5)$	$3.215(2)$	2.830 (1)
$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	2.852(2)	2.843(1)
$\mathrm{Ru}(2)-\mathrm{Ru}(5)$	$3.209(2)$	2.881(1)
$\mathrm{Ru}(3)-\mathrm{Ru}(4)$	2.925 (2)	2.809(1)
$\mathrm{Ru}(3)-\mathrm{Ru}(5)$	2.763(1)	2.879(1)
$\mathrm{Ru}(4)-\mathrm{Ru}(5)$	2.762(2)	$2.799(2)$
Ru(1)-P(1)	2.397(3)	2.287(2)
$\mathrm{Ru}(1)-\mathrm{P}(2)$	2.362(3)	2.257(2)
$\mathrm{Ru}(2)-\mathrm{P}(2)$		2.269(2)
$\mathrm{Ru}(5)-\mathrm{P}(2)$	$2.279(3)$	
Ru(1)-C(2)	2.27 (1)	2.234(4)
$\mathrm{Ru}(2)-\mathrm{C}(2)$	2.12(1)	$2.063(4)$
Ru(3)-C(2)	2.19(1)	$2.105(4)$
Ru(4)-C(2)	2.04(1)	2.171(4)
$\mathrm{Ru}(2)-\mathrm{C}(1)$	2.23(1)	
$\mathrm{Ru}(3)-\mathrm{C}(4)$	2.26(1)	$2.439(8)$
$\mathrm{Ru}(3)-\mathrm{C}(5)$	2.18(1)	$2.253(7)$
$\mathrm{Ru}(3)-\mathrm{C}(6)$	2.21(1)	
$\mathrm{Ru}(4)-\mathrm{C}(1)$		$2.194(5)$
$\mathrm{Ru}(4)-\mathrm{C}(3)$		$2.161(6)$
$\mathrm{Ru}(1)-\mathrm{C}(51)$		$2.289(6)$
$\mathrm{Ru}(3)-\mathrm{C}(53)$		2.254(7)
$\mathrm{Ru}(3)-\mathrm{C}(32)$	1.92(1)	
$\mathrm{Ru}(5)-\mathrm{C}(53)$		2.004(6)
$\mathrm{Ru}(5)-\mathrm{C}(51)$		$1.990(6)$
$\mathrm{Ru}(5)-\mathrm{C}(32)$	2.40(1)	
$\mathrm{P}(1)-\mathrm{C}(1)$	1.82(1)	$1.795(5)$
$\mathrm{C}(1)-\mathrm{C}(2)$	1.43(2)	1.445(7)
$\mathrm{C}(1)-\mathrm{C}(3)$	1.53(2)	$1.435(8)$
$\mathrm{C}(3)-\mathrm{C}(4)$	1.50(2)	1.473 (8)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.40(2)	1.395(9)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.36 (2)	1.533(9)
$\mathrm{Ru}-\mathrm{CO}$	1.83-1.94(1)	1.866-1.922(5)
	av. 1.90	av. 1.892
$\mathrm{C}-\mathrm{O}$	1.08-1.17(1)	1.121-1.184(7)
	av. 1.135	av. 1.139
$\mathrm{P}-\mathrm{C}(\mathrm{Ph})$	1.82-1.85(1)	1.812-1.818(6)
	av. 1.84	av. 1.817
$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	94.61(5)	92.28(4)
$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(4)$	87.38(5)	88.33(4)
$\mathrm{Ru}(1)-\mathrm{Ru}(4)-\mathrm{Ru}(3)$	91.80(5)	90.42(4)
$\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(4)$	85.81(5)	88.94(4)
$\mathrm{Ru}(1)-\mathrm{Ru}(5)-\mathrm{Ru}(3)$	89.68(4)	89.86(4)
$\mathrm{Ru}(2)-\mathrm{Ru}(5)-\mathrm{Ru}(4)$	83.51(5)	87.78(3)
$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(1)$	86.4(4)	82.4(2)

the core approximates a proto-square pyramid, one apical-basal edge of which is bridged by CO [asymmetrically, with $\mathrm{Ru}(3)-\mathrm{C}(32) 1.92, \mathrm{Ru}(5)-\mathrm{C}(32) 2.40 \AA$] and another long, apparently non-bonding (but see below), vector by a PPh_{2} ligand. A molecule of butadiene has added to C_{α} of the $\mathrm{C}_{2} \mathrm{PPh}_{2}$ ligand of 1 to form a $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{4}\right) \mathrm{CH}_{2} \mathrm{C}(\mathrm{C}) \mathrm{PPh}_{2}$ ligand which is attached to the Ru_{4} face of the cluster by an allylic interaction with $\mathrm{Ru}(3)$, the PPh_{2} group bonded to $\mathrm{Ru}(1), \mathrm{C}(1)$ bonded to $\mathrm{Ru}(2)$ and $\mathrm{C}(2)$ which is bonded to all four Ru atoms. The eleven remaining CO ligands are terminal.

There are several interesting features of the structure. The eight Ru-Ru separations range between 2.76 and $3.21 \AA$ but fall into four groups:
(i) two bonds from $\mathrm{Ru}(5)$ to $\mathrm{Ru}(3)$ and $\mathrm{Ru}(4)$ [2.763(1), 2.762(2) \AA, respectively], which are apical-basal bonds, the former being bridged by CO (32);
(ii) two bonds connecting basal Ru atoms bridged by $\mathrm{C}(1)-\mathrm{P}(1)[2.900(2) \AA]$ and by carbons C(1)-C(6) [2.852(2) \AA];
(iii) two non-bridged basal $\mathrm{Ru}-\mathrm{Ru}$ bonds [2.925(2) and 2.962(1) \AA];
(iv) two long non-bonding separations between $R u(5)$ and $\mathrm{Ru}(1)$ and $\mathrm{Ru}(2)$ [3.215(2) and $3.209(2) \AA$, respectively].
The $\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}$ moiety in 1 , now labelled $\mathrm{C}(1)$ and $\mathrm{C}(2)$, respectively, is also attached to the Ru_{4} face. The former carbon forms a link between $\mathrm{P}(1)$ and the four-carbon allylic chain derived from the butadiene, and is attached to $\operatorname{Ru}(2)$ [2.23(1) \AA], while $\mathrm{C}(2)$ more nearly resembles an alkylidyne carbon; the basal $\mathrm{Ru}-\mathrm{C}(2)$ distances form a progression from 2.04(1) to $2.27(1) \AA$. The $\mathrm{C}(1)-\mathrm{C}(2)$ bond length is $1.43(2)$ A.

The electron count requires the hydrocarbon chain in the tertiary phosphine to donate seven electrons to the cluster; these come formally from the allyl group (three), from $\mathrm{C}(1)$ (one) and $\mathrm{C}(2)$ (three). Together with the 12 CO groups (24), the PPh_{2} group (3), and the phosphine \mathbf{P} atom (2), the cluster has a 76 -cluster valence electron (c.v.e.) configuration.

Molecular structure of $\mathrm{Ru}_{5}\left\{\mu_{4} \mathrm{CC}\left(\mathrm{PPh}_{2}\right) \mathrm{CHCH}=\mathrm{CHMe}\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{9}$ (8)

The structure of $\mathbf{8}$ is shown in Fig. 2, relevant bond parameters being collected in Table 1. The metal core forms a distorted square pyramid, with $\mathrm{Ru}-\mathrm{Ru}$ distances ranging from 2.748 to $2.881(1) \AA$. Two apical-basal edges are bridged asymmetrically by CO groups [$\mathrm{Ru}(1)-\mathrm{C}(51) 2.289(6), \mathrm{Ru}(5)-\mathrm{C}(51) 1.990(6), \mathrm{Ru}(3)-$ $\mathrm{C}(53)$ 2.254(7), Ru(5)-C(53) 2.004(6) \AA; $\mathrm{Ru}(5)-\mathrm{C}(51)-\mathrm{O}(51)$ 147.6(5), Ru(5)-$\left.\mathrm{C}(53)-\mathrm{O}(53) 145.6(5)^{\circ}\right]$ and $\mathrm{Ru}(1)-\mathrm{Ru}(2)$ is symmetrically bridged by the PPh_{2} ligand $[\mathrm{Ru}(1)-\mathrm{P}(2) \quad 2.257(2), \mathrm{Ru}(2)-\mathrm{P}(2) \quad 2.269(2) \AA]$. The remaining nine CO ligands are all terminal.

Atom $\mathrm{C}(2)$ caps the Ru_{4} face, again with a uniform spread of $\mathrm{Ru}-\mathrm{C}(2)$ distances: $2.063,2.105,2.171$ and $2.234(4) \AA$; it is also attached to $\mathrm{C}(1)$ [1.445(7) \AA]. These two atoms are part of the $\mathrm{C}_{2} \mathrm{PPh}_{2}$ ligand in $1, \mathrm{C}(2)$ still carrying the PPh_{2} group which interacts with $R u(1)[R u(1)-P(1) 2.287(2) \AA]$. A four-carbon chain derived from a butadiene molecule is bonded to $\mathrm{C}(1)$; the hydrocarbon interacts with $R u(4)$ via $C(2)-C(1)-C(3)$ and with $R u(3)$ via the $C(4)-C(5)$ double bond. However, the $R u(3)-C(4)$ distance is long at $2.439(6) \AA$, perhaps because of some strain in the rest of the chain. As with 7, the six-carbon chain donates seven electrons to the cluster. Five of these obviously come from the $C(4)-C(5)$ double

(8)

Fig. 2. Plot of a molecule of $\mathrm{Ru}_{5}\left\{\mu_{4}-\mathrm{CC}\left(\mathrm{PPh}_{2}\right) \mathrm{CHCH}=\mathrm{CHMe}\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{9}(8)$, showing the atom numbering scheme. Non-hydrogen atoms are shown as 20% thermal ellipsoids; hydrogen atoms have arbitrary radii of $0.1 \AA$.
bond and the alkylidyne $C(2)$; the other two come from the $C(1)-C(3)$ system. As a whole, the cluster has the expected $74-\mathrm{c} . \mathrm{v} . e$. configuration.

The metal atom cores in 7 and 8 are similar, both being derived from square pyramids; two of the apical-basal edges in 7 are non-bonding. The usual cluster valence electron count associated with a square pyramid is 74 , as found for 8. Cleavage of two $\mathrm{Ru}-\mathrm{Ru}$ bonds in 7 should increase the count to 78 c.v.e.; the observed count of only 76 c.v.e. suggests that the long $\mathrm{Ru}-\mathrm{Ru}$ separations are formally each 1-e bonds.

Both complexes 7 and 8 have been formed by attack of butadiene on C_{α} of the $\mathrm{C}_{2} \mathrm{PPh}_{2}$ ligand in 1 . It is not possible to say whether an initial butadiene derivative is formed first, although the results that we have obtained in similar reactions with olefins, allene and allyl halides strongly suggest this to be the case [1-4]. Formation of the bond between C_{α} and the terminal carbon of the diene with concomitant rearrangement leads to formation of the η^{3}-allylic side chain found in 7. In the case of 8 , isomerisation of the hydrocarbon chain by an H -atom shift has occurred. In 7, the C(1)-C(2) fragment can be described as part of an alkylidyne or as a vinylidene, of which $C(1)$ is substituted by $C(3)$ and $P(1)$. The $C(1)-C(2)$ distance is consistent with the latter interpretation: a related complex is $R u_{5}\left(\mu_{4^{-}}\right.$ $\operatorname{PPh})\left\{\mu_{3}-\mathrm{CCPh}\left(\mathrm{PPh}_{2}\right)\right\}(\mathrm{CO})_{12}$, in which the analogous bond is $1.45(6) \AA$ [5]. In 8 , however, C_{α} is involved in a multiple bond to $\mathrm{C}(3)$ [1.432(7) \AA], so that the vinylidene description is not appropriate for the interaction between $\mathrm{C}(1)-\mathrm{C}(2)$ and $\mathrm{Ru}(4)$. At present, we are unable to rationalise the long $\mathrm{Ru}(3)-\mathrm{C}(4)$ distance, the asymmetry in the $\mathrm{C}(4)-\mathrm{C}(5)$ bonding to $\mathrm{Ru}(3)$ possibly being influenced by the necessity for this double bond to occupy an axial site on $\mathrm{Ru}(3)$. The $\mathrm{C}-\mathrm{C}$ bond lengths in the $C(1)-C(5)$ chain suggest that some delocalisation of electron density occurs along this chain.

(9)

Fig. 3. Plot of a molecule of $\mathrm{Ru}_{5}\left(\mu_{4}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{11}(9)$, showing the atom numbering scheme. Non-hydrogen atoms are shown as 20% thermal ellipsoids; hydrogen atoms have arbitrary radii of 0.1 A.

Molecular structure of $R u_{5}\left(\mu_{4} C_{6} H_{6}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{11}$ (9)
A molecule of 9 is shown in Fig. 3 and selected bond lengths and angles are listed in Table 2. The metal skeleton can be variously described as an edge-bridged tetrahedron or a wing-capped butterfly, although when the two atoms $\mathrm{C}(1)-\mathrm{C}(2)$ are taken into account, the skeletal description simplifies to a $\mathrm{C}_{2} \mathrm{Ru}_{4}$ octahedron, an Ru_{3} face of which is capped by Ru . Two $\mathrm{Ru}-\mathrm{Ru}$ edges are bridged by $\mu-\mathrm{PPh}_{2}$ groups; the eleven CO groups are all terminal.

The eight $\mathrm{Ru}-\mathrm{Ru}$ separations are between $2.692(1)$ and $2.9231(7) \AA$ and fall into four groups, for which there is no obvious rationale. These are:
(i) the shortest, $\mathrm{Ru}(2)-\mathrm{Ru}(3)$, is one of the uncapped wing edges;
(ii) three between 2.7694 (7) and 2.7928 (7) \AA, comprising the PPh_{2}-bridged vector $R u(1)-R u(2)$, one capped wing edge $[R u(1)-R u(5)]$, and a non-bridged edge of the Ru_{4} tetrahedron [$\mathrm{Ru}(3)-\mathrm{Ru}(4)$];
(iii) three between $2.830(1)$ and 2.8606 (7) \AA, comprising the other non-bridged edge of the Ru_{4} tetrahedron, the non-bridged $\mathrm{Ru}(3)-\mathrm{Ru}(5)$ capped wing edge, and the hinge, $\mathrm{Ru}(1)-\mathrm{Ru}(3)$;
(iv) the longest bond is the PPh_{2}-bridged edge, $\mathrm{Ru}(4)-\mathrm{Ru}(5)$, of the Ru_{4} tetrahedron.
There are some curious asymmetries in these $\mathrm{Ru}-\mathrm{Ru}$ separations. The two PPh_{2}-bridged $\mathrm{Ru}-\mathrm{Ru}$ vectors differ by $0.15_{4} \AA$, while there is a difference of 0.05_{3} \AA in the two hinge-wing tip distances involving $\mathrm{Ru}(4)$. These differences can be

Table 2
Selected bond lengths (\AA) and angles (deg) for $\mathrm{Ru}_{5}\left(\mu_{4}-\mathrm{C}_{6} \mathrm{H}_{6} \times\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{11}(9)\right.$

$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	2.7694(7)	$\mathrm{Ru}(1)-\mathrm{C}(2)$	$2.156(4)$
$\mathrm{Ru}(1)-\mathrm{Ru}(3)$	2.8606 (7)	Ru(2)-C(1)	$2.345(4)$
$\mathrm{Ru}(1)-\mathrm{Ru}(4)$	$2.830(1)$	$\mathrm{Ru}(2)-\mathrm{C}(2)$	$2.336(4)$
Ru(1)-Ru(5)	2.7835(7)	Ru(3)-C(1)	$2.146(4)$
$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	2.692(1)	$\mathrm{Ru}(5)-\mathrm{C}(1)$	2.233(4)
Ru(3)-Ru(4)	2.7928 (7)	Ru(5)-C(2)	2.243(4)
$\mathrm{Ru}(3)-\mathrm{Ru}(5)$	2.8363(8)	C(1)-C(2)	1.424(6)
$\mathrm{Ru}(4)-\mathrm{Ru}(5)$	2.9231(7)	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.522(6)$
$\mathrm{Ru}(1)-\mathrm{P}(1)$	2.315(1)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.490(7)
$\mathrm{Ru}(2)-\mathrm{P}(1)$	2.268(1)	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.320(7)$
$\mathrm{Ru}(4)-\mathrm{P}(2)$	2.223(1)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.492(7)
$\mathbf{R u}(5)-\mathrm{P}(2)$	2.300 (1)	$\mathrm{C}(1)-\mathrm{C}(6)$	$1.524(6)$
Ru-CO	range 1.844-1.932(5), av. $1.889 \AA$		
$\mathrm{C}-\mathrm{O}$	range 1.128-1.155(6), av. $1.14 \AA$		
$\mathrm{P}-\mathrm{C}(\mathrm{Ph})$	range 1.817-1.832(5), av. $1.823 \AA$		
Dihedrals:	$\begin{aligned} & \mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3) / \mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(4) 11.61(2)^{\circ} \\ & \mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3) / \mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(5) 62.68(2)^{\circ} \\ & \mathrm{Ru}(2)-\mathrm{C}(1)-\mathrm{C}(2) / \mathrm{Ru}(5)-\mathrm{C}(1)-\mathrm{C}(2) 42.7(1)^{\circ} \\ & \mathrm{C}(1-6) / \mathrm{Ru}(2)-\mathrm{C}(1)-\mathrm{C}(2) 68.0(1)^{\circ} \\ & \mathrm{C}(1-6) / \mathrm{Ru}(5)-\mathrm{C}(1)-\mathrm{C}(2) 69.4(1)^{\circ} \end{aligned}$		

related to the electron distribution within the cluster. It is interesting that the four atoms $\mathrm{Ru}(1,2,3,4)$ form an almost planar rhombus [dihedral 11.61(2) ${ }^{\circ}$; the dihedral within the C_{2}-bridged butterfly is $117.32(2)^{\circ}$.

The two carbons $C(1), C(2)$ form the usual μ-alkyne- M_{4} cluster, in which the $\mathrm{Ru}-\mathrm{C}$ distances form three sets:
(i) two at $2.146,2.156(4) \AA$ to the 'hinge' Ru atoms;
(ii) two at $2.233,2.243(4) \AA$, to one wing-tip atom also attached to the face-capping $\mathrm{Ru}(4)$;
(iii) two at $2.336,2.345(4) \AA$, to the other wing-tip atom, $R u(2)$.

The first two sets are within the normal separations found in related clusters, e.g. 2.16-2.26(1) \AA in $\mathrm{Ru}_{4}\left(\mu_{4}-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)(\mathrm{CO})_{12}[6]$ or $2.16-2.27(1) \AA$ in $\mathrm{Ru}_{4}\left(\mu_{4}-\mathrm{C}_{2} \mathrm{Me}_{2}\right)$ (CO) 12 [7].

The organic ligand, which is formally a cyclo-adduct of C_{2} with butadiene, is $\mu_{4}-\eta^{2}$-cyclohex-1-en-4-yne, a rare isomer of benzene. Within the organic ligand, $C(1)-C(2)[1.424(6) \AA]$ is similar to other examples of $C_{2} R u_{4}$ clusters [6,7]. Other bonds around the six-membered ring show localisation, with the site of the double bond confirmed as $C(4)-C(5)[1.320(7) \AA]$; the other $C-C$ separations range between 1.490 and $1.524(6) \AA$.

It is difficult to account for the formation of 9 except in empirical terms. Cleavage of the $\mathrm{P}-\mathrm{C}_{\alpha}$ bond in 1 and Diels-Alder cycloaddition of butadiene to the C_{2} moiety which is thus released gives an unusual $\mathrm{C}_{6} \mathrm{H}_{6}$ isomer which is stabilised on the cluster framework. Compared with $\mathbf{1}$, which has seven, there is one more $\mathrm{Ru}-\mathrm{Ru}$ bond in 9 , corresponding to a loss of two electrons from the attached ligands. As found with other $\mathrm{C}_{2} \mathrm{M}_{4}$ clusters ($\mathrm{M}=\mathrm{Fe}, \mathrm{Ru}, \mathrm{Os}$), the whole is two electrons deficient by the normal electron counting rules, although when consid-
ered as an Ru -capped $\mathrm{C}_{2} \mathrm{Ru}_{4}$ cluster, 9 has the expected 72-c.v.e. configuration [8]. Individual metal atoms are either electron-rich or -poor; these polarities may account for some of the discrepancies in $\mathrm{Ru}-\mathrm{Ru}$ separations.

Spectroscopic properties

The NMR spectra of the three complexes are consistent with their solid-state structures. Thus, for 7 , four of the protons of the C_{4} chain are centred at $\delta 2.85$ (complex multiplet), with $\mathrm{H}(5)$ and $\mathrm{H}(6 \mathrm{a})$ resonating at $\delta 4.19$ and 3.32, respectively. In 8 , the $\mathrm{H}(5), \mathrm{Me}, \mathrm{H}(4)$ and $\mathrm{H}(3)$ signals are at $\delta 0.81,2.03,4.20$ and 4.82 , respectively. In the ${ }^{13} \mathrm{C}$ NMR spectra, the alkylidyne carbons $\mathrm{C}(2)$ are found at δ 304.6 and 261.1 in 7 and 8 , respectively, while $C(1)$ occurs at relatively high field, at $\delta 61.0$ for 7 and 51.3 for 8 . The carbon atoms of the butadiene-derived chain resonate between $\delta 38.3$ and 92.7 (for 7) and 23.0 and 84.5 (for 8).

The CH_{2} protons of the C_{6} ring in 9 are found at $\delta 2.75$ and 4.07 , while the CH protons resonate as an AB quartet between $\delta 5.47$ and 5.69 . The ring carbons were found at $\delta 52.3$ and $57.1(\mathrm{C}(3,6)), 125.0$ and $125.1(\mathrm{C}(4,5))$ and $164.6(\mathrm{C}(1,2))$ in the ${ }^{13} \mathrm{C}$ NMR spectrum. In all cases, other resonances are assigned as recorded in the Experimental section.

Conclusions

The reactivity of 1 with olefins has been extended to the reaction with 1,3butadiene. In addition to the previously described cluster-mediated three-component reaction which afforded a metallated benzoyldiphenylphosphine ligand [1], two other types of reaction have been found: (i) addition to C_{α} of the $\mathrm{C}_{2} \mathrm{PPh}_{2}$ ligand in 1 to give isomeric $\mathrm{Ph}_{2} \mathrm{PC}(\mathrm{C}) \mathrm{CH}_{2}-\eta^{3}-\mathrm{CHCHCH}_{2}$ and $\mathrm{Ph}_{2} \mathrm{PC}(\mathrm{C})$ $\mathrm{CHCH}=\mathrm{CHMe}$ ligands, and (ii) formation of a cyclic C_{6} ligand by cycloaddition of the 1,3-diene to the C_{2} fragment with concomitant cleavage of the $\mathrm{P}-\mathrm{C}_{\alpha}$ bond. In the latter case, the rare $\mathrm{C}_{6} \mathrm{H}_{6}$ isomer cyclohex-1-en-3-yne is trapped in an Ru -capped $\mathrm{C}_{2} \mathrm{Ru}_{4}$ cluster.

Experimental

All reactions were carried out under dry, high purity nitrogen by standard Schlenk techniques. Solvents were dried and distilled before use. Elemental analyses were performed by the Canadian Microanalytical Service, Delta, B.C., Canada V4G 1G7. TLC was carried out on glass plates ($20 \times 20 \mathrm{~cm}$) coated with silica gel (Merck $60 \mathrm{GF}_{254}, 0.5 \mathrm{~mm}$ thick). Complex 1 was prepared by the literature method [5,9]. $\mathrm{Me}_{3} \mathrm{NO} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Aldrich) was dehydrated by sublimation $\left(100^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}\right) .1,3$-Butadiene was obtained commercially (Matheson) and used as received.

Instrumentation was as follows. IR: Perkin-Elmer 1700X FT IR; 683 double beam, NaCl optics; NMR: Bruker CXP300 or ACP300 (${ }^{1} \mathrm{H}$ NMR at 300.13 MHz , ${ }^{13} \mathrm{C}$ NMR at 75.47 MHz). FAB MS: VG ZAB 2HF (FAB MS, using 3-nitrobenzyl alcohol as matrix, exciting gas $\mathrm{Ar}, \mathrm{FAB}$ gun voltage 7.5 kV , current 1 mA , accelerating potential 7 kV).

Table 3
Non-hydrogen atomic coordinates and isotropic thermal parameters for $\mathrm{Ru}_{5}\left(\mu_{4}-\mathrm{CC}\left(\mathrm{PPh}_{2}\right) \mathrm{CH}_{2}-\eta^{3}\right.$ -$\left.\mathrm{CHCHCH}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{11}(7)$

Atom	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)^{4}$
Ru(1)	0.75572(4)	$0.59677(4)$	0.41051(4)	$0.0376(3)$
$\mathrm{Ru}(2)$	0.71397(5)	$0.52713(4)$	0.52416 (4)	$0.0410(3)$
$\mathrm{Ru}(3)$	0.63514(5)	$0.45631(4)$	$0.44707(5)$	0.0435(4)
Ru(4)	0.68203(5)	$0.51615(4)$	0.32792(4)	0.0417(3)
Ru(5)	0.61886(5)	$0.57919(4)$	$0.42257(5)$	0.0429(4)
C(11)	$0.7774(6)$	0.6188(5)	0.3226 (6)	0.050(5)
O(11)	0.7908(4)	0.6350(4)	0.2707(4)	0.069(4)
C(12)	0.8033(6)	0.6571(6)	0.4506(5)	0.049(5)
O(12)	0.8329(4)	0.6924(4)	0.4707(5)	0.083(4)
C(21)	$0.7715(6)$	$0.5770(6)$	0.5656(6)	$0.050(5)$
O(21)	$0.8020(4)$	0.6066(4)	0.5982(4)	0.077(4)
C(22)	0.7187(6)	0.4644(6)	0.5917(7)	0.069(6)
O(22)	0.7234(5)	0.4273(5)	0.6296(4)	$0.099(5)$
C(23)	0.6546(6)	0.5717(6)	0.5723(6)	$0.062(6)$
O(23)	$0.6284(4)$	0.5964(5)	0.6112(4)	0.080(4)
C(31)	0.6043(7)	0.4384(6)	$0.5319(7)$	0.064(6)
O(31)	0.5881(5)	0.4263(5)	0.5811(5)	$0.095(5)$
C(32)	$0.5610(7)$	0.4886(6)	0.4235(7)	$0.066(6)$
O(32)	0.5121(4)	0.4855(4)	0.4109 (6)	$0.089(5)$
C(41)	0.6212(6)	0.4719(6)	0.2930 (6)	0.062(6)
O(41)	0.5842(5)	$0.4438(5)$	0.2697(5)	0.093(5)
C(42)	0.6711(6)	0.5746(6)	0.2576 (6)	0.051(5)
O(42)	$0.6662(5)$	0.6065(4)	0.2141(4)	0.082(4)
C(43)	0.7387(6)	0.4697(6)	0.2783(6)	0.054(5)
O (43)	0.7672(5)	0.4438(4)	0.2423(5)	0.080(4)
C(51)	0.5707(6)	0.5942(6)	$0.3520(6)$	0.062(6)
O(51)	0.5372(5)	$0.6026(5)$	$0.3104(5)$	$0.099(5)$
C(52)	0.5681(6)	0.6144(6)	0.4857(6)	0.058(6)
O(52)	0.5313(4)	$0.6368(5)$	0.5162(5)	0.082(5)
C(1)	0.7620 (5)	0.4691(5)	0.4512(5)	0.036(4)
C(2)	$0.7156(5)$	0.5027(5)	0.4215(5)	0.040(4)
C(3)	$0.7600(5)$	0.3997(5)	0.4558(6)	0.049(5)
C(4)	$0.6986(6)$	0.3796(5)	0.4636(6)	$0.050(5)$
C(5)	$0.6633(6)$	0.3683(5)	0.4082(7)	0.058(5)
C(6)	0.6051(6)	$0.3653(6)$	0.4155(8)	0.075(6)
P(1)	0.8235(1)	0.5161(1)	0.4293(2)	0.042(1)
C(111)	$0.8770(5)$	0.5191(6)	0.4959(5)	0.045(4)
C(112)	0.9209(6)	$0.5604(6)$	0.4919(6)	0.055(5)
C(113)	0.9621(6)	$0.5640(7)$	0.5403(7)	0.071(6)
C(114)	0.9593(7)	0.5256(7)	0.5952(7)	0.078(7)
C(115)	$0.9170(7)$	$0.4840(7)$	$0.6010(7)$	0.070(6)
C(116)	0.8754(6)	0.4807(6)	0.5493(6)	0.059(5)
C(121)	0.8669(5)	0.4811(6)	0.3624(5)	0.044(4)
C(122)	0.8832(6)	0.5145(6)	$0.3056(6)$	0.064(6)
C(123)	$0.9163(7)$	0.4883(9)	0.2564(7)	0.084(7)
C(124)	0.9345(7)	0.430(1)	0.2628(8)	0.091(8)
C(125)	0.9200(7)	0.3975(7)	0.3198(9)	0.082(7)
C(126)	0.8865(6)	0.4222(6)	$0.3684(6)$	0.055(5)
P(2)	0.6758(2)	0.6632(1)	0.4107(1)	0.044(1)

Table 3 (continued)

Atom	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)^{a}$
$\mathrm{C}(211)$	$0.6659(6)$	$0.7206(5)$	$0.4779(6)$	$0.047(5)$
$\mathrm{C}(212)$	$0.6183(6)$	$0.7604(6)$	$0.4708(6)$	$0.062(5)$
$\mathrm{C}(213)$	$0.6074(7)$	$0.8024(6)$	$0.5171(7)$	$0.076(7)$
$\mathrm{C}(214)$	$0.6424(8)$	$0.8077(6)$	$0.5709(7)$	$0.071(7)$
$\mathrm{C}(215)$	$0.6895(7)$	$0.7709(6)$	$0.5796(6)$	$0.066(6)$
$\mathrm{C}(216)$	$0.7007(6)$	$0.7260(6)$	$0.5319(6)$	$0.054(5)$
$\mathrm{C}(221)$	$0.6751(6)$	$0.7168(5)$	$0.3393(5)$	$0.048(5)$
$\mathrm{C}(222)$	$0.6308(7)$	$0.7242(6)$	$0.2953(7)$	$0.066(6)$
$\mathrm{C}(223)$	$0.6357(9)$	$0.7657(7)$	$0.2419(8)$	$0.094(8)$
$\mathrm{C}(224)$	$0.683(1)$	$0.7998(6)$	$0.2362(7)$	$0.086(8)$
$\mathrm{C}(225)$	$0.7275(8)$	$0.7942(6)$	$0.2792(7)$	$0.083(7)$
$\mathrm{C}(226)$	$0.7241(7)$	$0.7530(6)$	$0.3309(6)$	$0.067(6)$
$\mathrm{Cl}(1)^{*}$	$0.8527(4)$	$0.7706(4)$	$0.6353(4)$	$0.196(5)$
$\mathrm{Cl}(2)^{*}$	$0.9261(4)$	$0.6806(4)$	$0.6809(4)$	$0.220(5)$
$\mathrm{Cl}(3)^{*}$	$0.9578(3)$	$0.7542(4)$	$0.5745(6)$	$0.257(6)$
$\mathrm{C}(0)^{*}$	$0.906(1)$	$0.721(1)$	$0.617(1)$	$0.14(1)$
$\mathrm{Cl}\left(1^{\prime}\right)^{*}$	$0.9993(4)$	$0.6409(4)$	$0.3447(4)$	$0.189(5)$
$\mathrm{Cl}\left(2^{\prime}\right)^{*}$	$1.0003(4)$	$0.7631(5)$	$0.3559(6)$	$0.243(7)$
$\mathrm{Cl}\left(3^{\prime}\right)^{\#}$	$0.9025(4)$	$0.7118(5)$	$0.3189(6)$	$0.262(8)$
$\mathrm{C}\left(0^{\prime}\right)^{*}$	$0.967(2)$	$0.706(2)$	$0.310(2)$	$0.17(1)$

* Site occupancy factor $=0.875(6) .{ }^{*}$ Site occupancy factor $=0.755(6) .{ }^{a} \mathrm{U}_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a^{\star} j\left(\mathbf{a}_{i} \cdot \mathbf{a}_{j}\right)$.

Reaction of $R u_{5}\left(\mu_{5}-C_{2} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{13}$ with 1,3-butadiene
A solution of $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{13}(150 \mathrm{mg}, 0.119 \mathrm{mmol})$ and 1,3-butadiene ($2.0 \mathrm{~g}, 37 \mathrm{mmol}$) in benzene (15 ml) was heated in a Carius tube for 10 h at $80^{\circ} \mathrm{C}$ (tube oven). After cooling to room temperature the solvent was removed and the residue purified by preparative TLC (light petroleum/acetone $10 / 3$) to give six bands. A red band ($R_{\mathrm{f}} 0.70$) was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / MeOH to yield $\mathrm{Ru}_{5}\left(\mu_{4}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{11}(9)(33 \mathrm{mg}, 22 \%)$, m.p. 194-202${ }^{\circ} \mathrm{C}$ (dec.). Found: C, 37.87; H, 2.06\%; $M^{+}, 1262 . \mathrm{C}_{41} \mathrm{H}_{26} \mathrm{O}_{11} \mathrm{P}_{2} \mathrm{Ru}_{5} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ calc.: C, 37.45; H, 2.10\%; M, 1262. IR: $\nu(\mathrm{CO})$ (cyclohexane) $2080 \mathrm{vw}, 2046 \mathrm{w}, 2012 \mathrm{vs}, 1987$ $\mathrm{m}, 1967 \mathrm{w}, 1955 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 2.61(1 \mathrm{H}, \mathrm{d}(\mathrm{br}), J(\mathrm{HH})=21 \mathrm{~Hz}$, $\mathrm{H}(3)$ or $\mathrm{H}(6))$, $2.88(1 \mathrm{H}, \mathrm{dq}, J(\mathrm{HH})=21.4,4.0 \mathrm{~Hz}, \mathrm{H}(3)$ or $\mathrm{H}(6)), 4.00(1 \mathrm{H}, \mathrm{dq}$, $J(\mathrm{HH})=21,4 \mathrm{~Hz}, \mathrm{H}(3)$ or $\mathrm{H}(6)$), $4.14(1 \mathrm{H}, \mathrm{d}(\mathrm{br}), J(\mathrm{HH})=19 \mathrm{~Hz}, \mathrm{H}(3)$ or $\mathrm{H}(6)$), $5.47(1 \mathrm{H}, \mathrm{d}, J(\mathrm{HH})=9.7 \mathrm{~Hz}, \mathrm{H}(4)$ or $\mathrm{H}(5)), 5.69(1 \mathrm{H}, \mathrm{d}, J(\mathrm{HH})=10.0 \mathrm{~Hz}, \mathrm{H}(4)$ or $\mathrm{H}(5)), 7.13-7.81(20 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 52.36(\mathrm{~d}, J(\mathrm{CP})=2.7 \mathrm{~Hz}$, CH_{2}), $57.10\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 124.96(\mathrm{~s},=\mathrm{CH}), 125.10(\mathrm{~s},=\mathrm{CH}), 127.97-132.75(\mathrm{~m}, \mathrm{Ph})$, $138.61(\mathrm{~d}, J(\mathrm{CP})=25.8 \mathrm{~Hz}$, ipso C), 138.99 (d, $J(\mathrm{CP})=25.4 \mathrm{~Hz}$, ipso C), 141.65 (d, $J(\mathrm{CP})=35.6 \mathrm{~Hz}$, ipso C), $143.05(\mathrm{~d}, J(\mathrm{CP})=35.6 \mathrm{~Hz}$, ipso C), $164.60(\mathrm{t}, J(\mathrm{CP})=8.3$ $\mathrm{Hz}, \mathrm{CC}), 192.89(\mathrm{~d}, J(\mathrm{CP})=10.8 \mathrm{~Hz}, \mathrm{CO}), 193.43(\mathrm{t}, J(\mathrm{CP})=6.3 \mathrm{~Hz}, \mathrm{CO}), 193.66$ $(\mathrm{d}, J(\mathrm{CP})=8.4 \mathrm{~Hz}, \mathrm{CO}), 195.84(\mathrm{~s}, \mathrm{CO}), 197.99(\mathrm{~s}, \mathrm{CO}), 198.92(\mathrm{~d}, J(\mathrm{CP})=4.8 \mathrm{~Hz}$, CO), 201.71 (s, CO), $202.77(\mathrm{~d}, J(\mathrm{CP})=10.9 \mathrm{~Hz}, \mathrm{CO}), 202.77(\mathrm{t}, J(\mathrm{CP})=4.3 \mathrm{~Hz}$, CO). FAB MS: 1262, $M^{+} ; 1234-954,[M-n \mathrm{CO}]^{+}(n=1-11)$. A yellow band (R_{f} 0.50) was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ to yield $\mathrm{Ru}_{4}\left\{\mu_{4}-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right\}(\mu$ -$\left.\mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\left(\eta^{3}-\mathrm{C}_{4} \mathrm{H}_{7}\right)(6)(24 \mathrm{mg}, 17 \%)$, m.p. $>300^{\circ} \mathrm{C}$ (dec.), identified as described [1]. The product from a black band ($R_{\mathrm{f}} 0.40$) was recrystallised $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ / $\mathrm{MeOH})$ to give $\mathrm{Ru}_{5}\left\{\mu_{4}-\mathrm{CC}\left(\mathrm{PPh}_{2}\right) \mathrm{CH}_{2}-\eta^{3}-\mathrm{CHCHCH}_{2}\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{11}(7)$

Table 4
Non-hydrogen atomic coordinates and isotropic thermal parameters for $\mathrm{Ru}_{5}\left(\mu_{4}-\mathrm{CC}\left(\mathrm{PPh}_{2}\right) \mathrm{CH}\right.$ -$\mathrm{CH}=\mathrm{CHMe})\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{9}(8)$

Atom	x	y	z	$U_{\text {eq }}\left(\AA^{2}{ }^{2}\right)$
$\mathrm{Ru}(1)$	0.18259(2)	0.71879(3)	0.70799 (3)	0.0266(1)
$\mathrm{Ru}(2)$	0.34198(2)	0.84730 (3)	0.82092(3)	0.0279(1)
Ru(3)	0.30087(3)	1.02541(3)	0.71127(3)	0.0355(2)
Ru(4)	$0.13533(3)$	0.89711(3)	0.59818(3)	0.0333(2)
Ru(5)	$0.31314(3)$	0.82739(3)	0.57548(3)	0.0362(2)
C(11)	0.1202(4)	0.5806(5)	0.6597(5)	0.053 (3)
$\mathrm{O}(11)$	0.0831(4)	0.4952(4)	0.6332(6)	0.095(3)
C(21)	0.3416(4)	0.9112(4)	0.9714(4)	0.043(2)
O(21)	0.3387(4)	0.9554(4)	1.0593(4)	0.068(2)
C(22)	0.4750 (4)	0.8395(5)	0.8401(5)	0.049 (3)
O(22)	0.5546(3)	0.8310(4)	0.8479(5)	0.084(3)
C(31)	0.4068(4)	1.0909(5)	0.8161(5)	$0.055(3)$
O(31)	0.4706(4)	1.1347(4)	0.8749(5)	$0.089(3)$
C(32)	0.3250(5)	1.1264(5)	0.6064(6)	$0.068(3)$
O(32)	0.3398(5)	1.1839(5)	0.5405(5)	$0.107(4)$
C(41)	0.1471(4)	0.9813(5)	0.4780(4)	$0.051(3)$
O(41)	$0.1509(4)$	$1.0351(4)$	$0.4068(4)$	$0.070(2)$
C(42)	0.0230(4)	$0.8170(5)$	0.5170(4)	0.047(2)
$\mathrm{O}(42)$	-0.0410(3)	$0.7703(4)$	0.4602(4)	$0.069(2)$
C(51)	0.2064(5)	0.7099(5)	0.5185(5)	$0.061(3)$
O(51)	0.1695(4)	0.6464(4)	0.4417(4)	0.080(3)
C(52)	0.4139(4)	0.7439(6)	0.5679(6)	$0.066(3)$
O(52)	0.4775(4)	0.6984(5)	0.5607(6)	$0.104(4)$
C(53)	0.4181(4)	0.9486(5)	0.6321(5)	$0.059(3)$
O(53)	0.4982(3)	$0.9841(5)$	0.6279(4)	$0.088(3)$
C(54)	0.3146(4)	0.8659(6)	0.4231(5)	0.062 (3)
O(54)	0.3155(4)	0.8850(5)	0.3330(4)	0.096 (3)
$\mathrm{P}(1)$	0.06483 (8)	0.7723(1)	0.8127(1)	$0.0346(5)$
C(111)	-0.0637(3)	$0.7489(4)$	0.7703(4)	0.042 (2)
C(112)	-0.1031(4)	$0.6767(5)$	$0.6765(5)$	0.054(3)
C(113)	-0.2016(5)	0.6664(6)	0.6443(6)	0.069(4)
C(114)	-0.2589(4)	$0.7248(7)$	0.7027(7)	0.082(4)
C(115)	-0.2193(4)	0.7976 (6)	0.7963(7)	0.076(4)
C(116)	-0.1229(4)	0.8085(5)	0.8297(6)	$0.060(3)$
C(121)	0.0698(3)	0.7769(4)	0.9665(4)	0.042(2)
C(122)	0.1063(5)	0.8695(5)	1.0378(5)	0.057(3)
C(123)	0.1099(5)	$0.8710(6)$	1.1549(5)	0.073(4)
C(124)	0.0746 (6)	0.7809(8)	1.2004(5)	0.087(5)
C(125)	0.0365(5)	0.6886(7)	1.1301(6)	$0.080(4)$
C(126)	$0.0370(4)$	0.6862(5)	1.0132(5)	0.060 (3)
P (2)	0.29491 (9)	$0.6716(1)$	0.8314(1)	$0.0352(5)$
C(211)	0.2663(4)	0.6211(4)	0.9641(4)	0.040(2)
C(212)	$0.2906(4)$	0.6809(5)	1.0704(5)	$0.051(3)$
C(213)	0.2682(5)	$0.6374(5)$	1.1692(5)	0.066(4)
C(214)	0.2245(6)	0.5361(6)	1.1644(6)	0.075(4)
C(215)	0.1999(6)	0.4746(5)	1.0603(7)	$0.075(4)$
C(216)	0.2209(5)	0.5178(5)	0.9612(6)	0.062(3)
C(221)	$0.3716(4)$	0.5763(4)	0.7823(5)	0.048(3)

Table 4 (continued)

Atom	x	y	z	$U_{\mathrm{eq}}\left(\AA^{2}\right)$
$\mathrm{C}(222)$	$0.4514(5)$	$0.5638(6)$	$0.8522(6)$	$0.074(4)$
$\mathrm{C}(223)$	$0.5123(6)$	$0.4937(8)$	$0.8164(8)$	$0.106(6)$
$\mathrm{C}(224)$	$0.4930(7)$	$0.4351(8)$	$0.7094(8)$	$0.106(6)$
$\mathrm{C}(225)$	$0.4146(6)$	$0.4460(6)$	$0.6406(7)$	$0.085(4)$
$\mathrm{C}(226)$	$0.3541(5)$	$0.5159(5)$	$0.6755(6)$	$0.062(3)$
$\mathrm{C}(1)$	$0.1155(3)$	$0.9013(4)$	$0.7804(4)$	$0.036(2)$
$\mathrm{C}(2)$	$0.2146(3)$	$0.8941(3)$	$0.7624(4)$	$0.030(2)$
$\mathrm{C}(3)$	$0.0781(4)$	$0.9883(5)$	$0.7343(5)$	$0.048(3)$
$\mathrm{C}(4)$	$0.1472(5)$	$1.0866(5)$	$0.7389(5)$	$0.059(3)$
$\mathrm{C}(5)$	$0.2189(5)$	$1.1226(4)$	$0.8282(6)$	$0.057(3)$
$\mathrm{C}(6)$	$0.2568(7)$	$1.2419(6)$	$0.8547(9)$	$0.103(6)$

(22 mg, 14\%), m.p. $>300^{\circ} \mathrm{C}$ (dec.). Found: C, $38.39 ; \mathrm{H}, 2.11 \% ; M^{+}, 1290$. $\mathrm{C}_{42} \mathrm{H}_{26} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{Ru}_{5} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ calc.: C, 38.31; H, 2.04\%; M, 1290. IR: $\nu(\mathrm{CO})$ (cyclohexane) $2057 \mathrm{w}, 2036 \mathrm{vs}, 2010 \mathrm{vs}, 1992 \mathrm{~m}, 1972 \mathrm{~m}, 1951 \mathrm{w}, 1897 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 2.74-2.93(4 \mathrm{H}, \mathrm{m}, \mathrm{H}(3,4,6 \mathrm{~b})), 3.32(1 \mathrm{H}, \mathrm{d}, J(\mathrm{HH})=6.4 \mathrm{~Hz}$, $\mathrm{H}(6 \mathrm{a})$), $4.19(1 \mathrm{H}, \mathrm{dt}, J(\mathrm{HH})=10.5$, $6.6 \mathrm{~Hz}, \mathrm{H}(5)), 6.88-7.97(20 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 38.29$ (s, C(3)), 41.71 (s, C(6)), 61.01 (d, J(CP) $=14.1 \mathrm{~Hz}, \mathrm{C}(1)$), 62.49 (d, J(CP) = $18.3 \mathrm{~Hz}, \mathrm{C}(4)$), 92.69 (s, C(5)), 127.26-134.39 (m, Ph), 137.20 (d, $J(\mathrm{CP})=46.8 \mathrm{~Hz}$, ipso C$), 140.47(\mathrm{~d}, J(\mathrm{CP})=37.7 \mathrm{~Hz}$, ipso C), $146.67(\mathrm{~d}, J(\mathrm{CP})=$ 31.4 Hz , ipso C), 192.74 (d, $J(\mathrm{CP})=5.7 \mathrm{~Hz}, \mathrm{CO}$), 195.53 (s, CO), 195.94 (s, CO), $198.00(\mathrm{~d}, J(\mathrm{CP})=6.2 \mathrm{~Hz}, \mathrm{CO}), 198.18(\mathrm{~d}, J(\mathrm{CP})=6.6 \mathrm{~Hz}, \mathrm{CO}), 200.10(\mathrm{~d}$, $J(\mathrm{CP})=5.1 \mathrm{~Hz}, \mathrm{CO}), 201.48(\mathrm{~d}, J(\mathrm{CP})=6.6 \mathrm{~Hz}, \mathrm{CO}), 201.32(\mathrm{~d}, J(\mathrm{CP})=5.5 \mathrm{~Hz}$, $\mathrm{CO}), 205.56(\mathrm{~d}, J(\mathrm{CP})=6.3 \mathrm{~Hz}, \mathrm{CO}), 218.42(\mathrm{~d}, J(\mathrm{CP})=21 \mathrm{~Hz}, \mathrm{CO}), 304.61(\mathrm{~s}$, $\mathrm{C}(2))$. FAB MS: $1290, M^{+} ; 1262-954,[M-n \mathrm{CO}]^{+}(n=1-12)$. A dark green band ($R_{\mathrm{f}} 0.35$) was recrystallised $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ to give crystals of $\mathrm{Ru}_{5}\left\{\mu_{4^{-}}\right.$ $\left.\mathrm{CC}\left(\mathrm{PPh}_{2}\right) \mathrm{CHCH}=\mathrm{CHMe}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{11}(8)(21 \mathrm{mg}, 14 \%)$, m.p. $222-225^{\circ} \mathrm{C}$ (dec.). Found: C, 38.76; H, 2.08%; M^{+}, 1262. $\mathrm{C}_{41} \mathrm{H}_{26} \mathrm{O}_{11} \mathrm{P}_{2} \mathrm{Ru}_{5} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ calc.: $\mathrm{C}, 39.02$; H, 2.08\%; M, 1292. IR: $\nu(\mathrm{CO})$ (cyclohexane) $2060 \mathrm{~m}, 2025$ (sh), 2018 vs, 1998 m , $1982 \mathrm{w}, 1961 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 0.81(1 \mathrm{H}, \mathrm{dq}, J(\mathrm{HH})=10.7,5.7 \mathrm{~Hz}$, $\mathrm{H}(5)), 2.03\left(3 \mathrm{H}, \mathrm{d}, J(\mathrm{HH})=5.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.20(1 \mathrm{H}, \mathrm{dt}, J(\mathrm{HH})=10.6,3.3 \mathrm{~Hz}$, $\mathrm{H}(4)), 4.82(1 \mathrm{H}, \mathrm{d}, J(\mathrm{HH})=3.4 \mathrm{~Hz}, \mathrm{H}(3)), 6.12(2 \mathrm{H}, \mathrm{dd}, J(\mathrm{HH})=12.9,7.2 \mathrm{~Hz}, \mathrm{Ph})$, $6.60(2 \mathrm{H}, \mathrm{td}, J(\mathrm{HH})=7.8,2.9 \mathrm{~Hz}, \mathrm{Ph}), 6.97-7.99(16 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR: δ $\left(\mathrm{CDCl}_{3}\right) 23.29\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 42.74(\mathrm{~s}, \mathrm{C}(5)), 51.29(\mathrm{~s}, \mathrm{C}(1)), 54.60(\mathrm{~s}, \mathrm{C}(4)), 84.55(\mathrm{~d}$, $J(\mathrm{CP})=5.4 \mathrm{~Hz}, \mathrm{C}(3)), 128.21-133.23(\mathrm{~m}, \mathrm{Ph}), 145.47(\mathrm{~d}, J(\mathrm{CP})=30.7 \mathrm{~Hz}$, ipso C), $148.84(\mathrm{~d}, J(\mathrm{CP})=32.2 \mathrm{~Hz}$, ipso C), 191.62 (s, CO), 191.71 (s, CO), 194.04 (s, CO), 198.03 (s, CO), 201.55 (s, CO), 201.64 (s, CO), 207.02 (s, CO), 207.24 (d, J(CP) $=5.1$ Hz, CO), $261.13(\mathrm{t}, J(\mathrm{CP})=7.1 \mathrm{~Hz}, \mathrm{C}(2))$. FAB MS: 1262, $M^{+} ; 1234-954$, [M $n \mathrm{CO}^{+}(n=1-11)$. The products from two other bands were formulated from their FAB mass spectia as $\mathrm{Ru}_{5}(\mathrm{CO})_{n}$ (dppa)(butadiene) ($n=10$ or 11 ; ca. 8 mg , 5%) and $\mathrm{Ru}_{3}(\mathrm{CO})_{9}(\mathrm{dppa})$ (butadiene) ($с a .5 \mathrm{mg}, 4 \%$) (dppa $=$ elements of $\left.\mathrm{C}_{2}\left(\mathrm{PPh}_{2}\right)_{2}\right)$, but crystals suitable for X -ray studies could not be obtained.

Crystallography

Unique data sets were measured at $c a .295 \mathrm{~K}$ within the specified $2 \theta_{\text {max }}$ limits using an Enraf-Nonius CAD4 diffractometer ($2 \theta / \theta$ scan mode; monochromatic

Table 5
Non-hydrogen atomic coordinates and isotropic thermal parameters for $\mathrm{Ru}_{5}\left(\mu_{4}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{11}$ (9)

Atom	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
Ru(1)	0.10140(1)	0.72882(2)	0.93347(3)	0.03680
$\mathrm{Ru}(2)$	0.03165(1)	0.80598 (2)	$0.76464(4)$	0.04178
$\mathrm{Ru}(3)$	$0.03380(1)$	$0.67400(2)$	$0.71171(4)$	0.04076
$\mathrm{Ru}(4)$	0.08631(1)	0.58929(2)	0.90543(4)	0.04106
$\mathrm{Ru}(5)$	0.15264(1)	$0.66672(2)$	0.70844(3)	0.03907
C(11)	0.0671(2)	0.6901(2)	1.0952(5)	0.0572
O(11)	$0.0468(2)$	$0.6734(2)$	1.1973(3)	0.0839
C(12)	$0.1713(2)$	0.7368(2)	$1.0218(5)$	0.0608
$\mathrm{O}(2)$	0.2149(2)	0.7434(2)	$1.0746(5)$	0.1028
C(21)	0.0372(2)	0.8886(2)	0.6744(5)	0.0648
O(21)	$0.0411(2)$	0.9394(2)	$0.6203(4)$	0.0961
C(22)	-0.0426(2)	0.8257(3)	$0.7920(6)$	0.0739
$\mathrm{O}(22)$	-0.0894(2)	0.8402(2)	$0.8060(5)$	0.1147
C(31)	-0.0189(2)	$0.6370(2)$	0.8411(5)	0.0629
$\mathrm{O}(31)$	-0.0543(2)	0.6232(2)	0.9149(4)	0.0947
C(32)	0.0370(2)	$0.6037(2)$	$0.5750(5)$	0.0685
O(32)	$0.0370(2)$	$0.5635(2)$	$0.4913(4)$	0.1041
C(33)	-0.0273(2)	0.7146(3)	$0.6126(6)$	0.0766
O(33)	-0.0676(2)	0.7276(2)	0.5497(5)	0.1152
C(41)	$0.1008(2)$	0.5484(2)	$1.0779(5)$	0.0618
$\mathrm{O}(41)$	$0.1097(2)$	0.5235(2)	$1.1835(4)$	0.0916
$\mathrm{C}(42)$	$0.0518(2)$	0.5101(2)	0.8473(5)	0.0595
$\mathrm{O}(42)$	$0.0314(2)$	0.4619 (2)	$0.8088(4)$	0.0869
C(51)	$0.2272(2)$	$0.6881(2)$	$0.7496(5)$	0.0624
O(51)	$0.2728(1)$	0.7023(2)	$0.7762(5)$	0.0923
C(52)	$0.1722(2)$	0.6434(2)	$0.5251(5)$	0.0673
O(52)	$0.1845(2)$	$0.6325(2)$	0.4127(4)	0.1078
$\mathrm{P}(1)$	$0.06304(5)$	0.83212(5)	0.9832(1)	0.0482
C(111)	0.0104(2)	$0.8407(2)$	1.1195(5)	0.0559
C(112)	$0.0138(2)$	0.8894(2)	$1.2244(5)$	0.0637
C(113)	-0.0271(3)	0.8927(3)	$1.3254(5)$	0.0782
C(114)	-0.0703(3)	0.8475(3)	$1.3249(6)$	0.0893
C (115)	-0.0739(2)	0.7992(3)	1.2253(6)	0.0811
C(116)	-0.0337(2)	0.7950(3)	$1.1240(5)$	0.0672
C(121)	$0.1038(2)$	0.9083(2)	$1.0010(4)$	0.0494
C(122)	0.0804(2)	0.9688(2)	0.9599(5)	0.0652
C(123)	0.1108(3)	1.0271(2)	0.9670(5)	0.0804
C(124)	$0.1653(2)$	$1.0266(2)$	1.0147(5)	0.0770
C(125)	$0.1885(2)$	$0.9674(3)$	$1.0575(6)$	0.0806
C(126)	$0.1584(2)$	$0.9087(2)$	1.0531(5)	0.0620
P(2)	0.16863(5)	0.56472(5)	0.8122(1)	0.0449
$\mathrm{C}(211)$	0.1689(2)	0.4856(2)	$0.7182(5)$	0.0540
$\mathrm{C}(212)$	0.1529(2)	$0.4804(3)$	0.5791(5)	0.0735
C(213)	$0.1498(3)$	$0.4186(3)$	0.5142(6)	0.0920
C(214)	$0.1631(3)$	$0.3614(3)$	0.5910 (7)	0.1010
C(215)	$0.1776(2)$	$0.3665(3)$	$0.7274(7)$	0.0864
C(216)	0.1803(2)	0.4276(2)	0.7941(6)	0.0695
C(221)	$0.2320(2)$	0.5570(2)	$0.9196(5)$	0.0488
C(222)	0.2359(2)	0.5826(3)	1.0546(5)	0.0650

Table 5 (continued)

Atom	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
$\mathrm{C}(223)$	$0.2846(2)$	$0.5802(3)$	$1.1305(6)$	0.0836
$\mathrm{C}(224)$	$0.3312(2)$	$0.5526(3)$	$1.0741(6)$	0.0899
$\mathrm{C}(225)$	$0.3298(2)$	$0.5271(3)$	$0.9412(7)$	0.0850
$\mathrm{C}(226)$	$0.2802(2)$	$0.5301(3)$	$0.8628(5)$	0.0652
$\mathrm{C}(1)$	$0.0926(2)$	$0.7434(2)$	$0.6260(4)$	0.0482
$\mathrm{C}(2)$	$0.1248(2)$	$0.7728(2)$	$0.7369(4)$	0.0448
$\mathrm{C}(3)$	$0.1660(2)$	$0.8288(2)$	$0.7068(5)$	0.0549
$\mathrm{C}(4)$	$0.1725(2)$	$0.8438(3)$	$0.5553(5)$	0.0704
$\mathrm{C}(5)$	$0.1418(3)$	$0.8166(3)$	$0.4541(5)$	0.0766
$\mathrm{C}(6)$	$0.0956(2)$	$0.7677(2)$	$0.4751(5)$	0.0606
$\mathrm{C}(0)$	$-0.1932(6)$	$0.7205(7)$	$0.820(1)$	0.288
$\mathrm{Cl}(1)$	$-0.2072(1)$	$0.6320(2)$	$0.8177(3)$	0.2135
$\mathrm{Cl}(2)$	$-0.1905(2)$	$0.7573(2)$	$0.9599(3)$	0.2440

Mo- K_{α} radiation, $\lambda 0.7107_{3} \AA$); N independent reflections were obtained, N_{0} with $I>3 \sigma(I)$ being considered 'observed' and used in the full matrix least squares refinement after gaussian absorption correction. Anisotropic thermal parameters were refined for the non-hydrogen atoms; $\left(x, y, z, U_{\text {iso }}\right)_{\mathrm{H}}$ were included constrained at estimated values. Conventional residuals R, R^{\prime} on $|F|$ are quoted, statistical weights derivative of $\sigma^{2}(I)=\sigma^{2}\left(I_{\text {diff }}\right)+0.0004 \sigma^{4}\left(I_{\text {diff }}\right)$ being used. Computation used the xtal 2.6 program system [10] implemented by S.R. Hall;

Table 6
Crystal data and refinement details for 7,8 and 9

	7	8	9
Formula MW	$\begin{aligned} & \mathrm{C}_{42} \mathrm{H}_{26} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{Ru}_{5} \cdot \sim 1.6 \mathrm{CHCl}_{3} \\ & 1481 \end{aligned}$	$\underset{176}{\mathrm{C}_{46} \mathrm{H}_{26} \mathrm{O}_{11} \mathrm{P}_{2} \mathrm{Ru}_{5}}$	$\begin{aligned} & \mathrm{C}_{41} \mathrm{H}_{26} \mathrm{O}_{11} \mathrm{P}_{2} \mathrm{Ru}_{5} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ & 1346.9 \end{aligned}$
Crystal system	Orthorhombic	Triclinic	Monoclinic
Space group	Pbca	$P \overline{1}$	$\boldsymbol{P} 2_{1} / \boldsymbol{n}$
a (A)	23.254(3)	14.110(11)	23.829(6)
$b(\AA)$	21.916(5)	12.770(8)	20.033(6)
$c(\AA)$	19.942(11)	11.842(5)	9.557(3)
α (deg)	-	96.26(4)	-
β (deg)	-	94.61(5)	90.92(2)
γ (deg)	-	97.99(6)	-
$U\left(\AA^{3}\right)$	10136	2091	4561
Z	8	2	4
$D_{\mathrm{c}}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.93	2.00	1.96
$F(000)$	5734	1220	2608
Crystal size (mm)	$0.17 \times 0.33 \times 0.20$	$0.41 \times 0.07 \times 0.20$	$0.15 \times 0.36 \times 0.15$
$A^{*}(\min , \max)$	1.29, 1.37	1.12, 1.48	1.58, 1.67
$\mu\left(\mathrm{cm}^{-1}\right)$	16.2	17.1	18.0
$2 \theta_{\text {max }}$ (deg)	50	60	65
N	8925	12149	16255
$N_{\text {o }}$	5276	8271	8832
R	0.056	0.036	0.038
$R_{\text {w }}$	0.054	0.036	0.036

neutral atom complex scattering factors were employed. Pertinent results are given in the Figures and Tables. Tables of structure factor amplitudes, thermal and hydrogen atom parameters, and full non-hydrogen geometries are available from the authors.

Abnormal features / variations in procedure

7. Data were approximately scaled to compensate for decomposition of ca. 20% during measurement. This may have been associated with partial loss of chloroform solvate molecules, modelled in the refinement with populations $0.875(6)$, $0.755(6)$, respectively and with high thermal motion. Hydrogen atoms associated with the ligand were located in difference maps.

Acknowledgements

We thank the Australian Research Council for financial support and Johnson Matthey Technology Centre for a generous loan of $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$.

References

1 Part LXXIX: C.J. Adams, M.I. Bruce, M.J. Liddell, B.W. Skelton and A.H. White, Organometallics, in press.
2 M.I. Bruce, J. Organomet. Chem., 394 (1990) 365; 400 (1990) 321.
3 C.J. Adams, M.I. Bruce, B.W. Skelton, and A.H. White, J. Organomet. Chem., in preparation.
4 C.J. Adams, M.I. Bruce, M.J. Liddell, B.W. Skelton and A.H. White, J. Organomet. Chem., in preparation.
5 M.I. Bruce, M.J. Liddell and E.R.T. Tiekink, J. Organomet. Chem., 391 (1990) 81.
6 B.F.G. Johnson, J. Lewis, B.E. Reichert, K.T. Schorpp and G.M. Sheldrick, J. Chem. Soc., Dalton Trans., (1977) 1417.
7 P.F. Jackson, B.F.G. Johnson, J. Lewis, P.R. Raithby, G.J. Will, M. McPartlin and W.J.H. Nclson, J. Chem. Soc., Chem. Commun., (1980) 1190.
8 D.M.P. Mingos and A.S. May, in D.F. Shriver, H.D. Kaesz and R.D. Adams (Eds.), The Chemistry of Metal Cluster Complexes, VCH, New York, 1990, p. 11.
9 M.I. Bruce, M.L. Williams, J.M. Patrick and A.H. White, J. Chem. Soc., Dalton Trans., (1985) 1229.
10 S.R. Hall and J.M. Stewart (Eds.), XTAL Users' Manual, Version 2.4, Universities of Western Australia and Maryland, 1988.

[^0]: Correspondence to: Professor M.I. Bruce, Department of Physical and Inorganic Chemistry, University of Adelaide, PO Box 498, Adelaide, South Australia 5001.

 * For Part LXXIX, see Ref. 1.

